Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.225
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1219-H1251, 2024 May 01.
Article En | MEDLINE | ID: mdl-38363215

Sex-based differences in the development of obesity-induced cardiometabolic dysfunction are well documented, however, the specific mechanisms are not completely understood. Obesity has been linked to dysregulation of the epitranscriptome, but the role of N6-methyladenosine (m6A) RNA methylation has not been investigated in relation to the sex differences during obesity-induced cardiac dysfunction. In the current study, male and female C57BL/6J mice were subjected to short- and long-term high-fat/high-sucrose (HFHS) diet to induce obesogenic stress. Cardiac echocardiography showed males developed systolic and diastolic dysfunction after 4 mo of diet, but females maintained normal cardiac function despite both sexes being metabolically dysfunctional. Cardiac m6A machinery gene expression was differentially regulated by duration of HFHS diet in male, but not female mice, and left ventricular ejection fraction correlated with RNA machinery gene levels in a sex- and age-dependent manner. RNA-sequencing of cardiac transcriptome revealed that females, but not males may undergo protective cardiac remodeling early in the course of obesogenic stress. Taken together, our study demonstrates for the first time that cardiac RNA methylation machinery genes are regulated early during obesogenic stress in a sex-dependent manner and may play a role in the sex differences observed in cardiometabolic dysfunction.NEW & NOTEWORTHY Sex differences in obesity-associated cardiomyopathy are well documented but incompletely understood. We show for the first time that RNA methylation machinery genes may be regulated in response to obesogenic diet in a sex- and age-dependent manner and levels may correspond to cardiac systolic function. Our cardiac RNA-seq analysis suggests female, but not male mice may be protected from cardiac dysfunction by a protective cardiac remodeling response early during obesogenic stress.


Adenosine/analogs & derivatives , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Female , Male , Sex Factors , Obesity/metabolism , Obesity/genetics , Obesity/physiopathology , Ventricular Function, Left , Mice , Ventricular Remodeling , Adenosine/metabolism , Heart Diseases/metabolism , Heart Diseases/genetics , Heart Diseases/etiology , Heart Diseases/physiopathology , Time Factors , Disease Models, Animal , Myocardium/metabolism , Transcriptome , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/etiology
2.
J Cardiovasc Transl Res ; 17(1): 121-132, 2024 Feb.
Article En | MEDLINE | ID: mdl-37650988

Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.


Heart Failure , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnosis , Stroke Volume , Metabolic Reprogramming , Myocardium/pathology , Ventricular Dysfunction, Left/metabolism
3.
PLoS One ; 18(12): e0293630, 2023.
Article En | MEDLINE | ID: mdl-38134189

Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Animals , Female , Rats , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Estrogens/pharmacology , Postmenopause/metabolism , Receptors, G-Protein-Coupled/metabolism , Sirtuin 1/metabolism , Uncoupling Protein 2 , Ventricular Dysfunction, Left/metabolism
4.
Sheng Li Xue Bao ; 75(3): 390-402, 2023 Jun 25.
Article Zh | MEDLINE | ID: mdl-37340648

Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure characterized by left ventricular diastolic dysfunction with preserved ejection fraction. With the aging of the population and the increasing prevalence of metabolic diseases, such as hypertension, obesity and diabetes, the prevalence of HFpEF is increasing. Compared with heart failure with reduced ejection fraction (HFrEF), conventional anti-heart failure drugs failed to reduce the mortality in HFpEF due to the complex pathophysiological mechanism and multiple comorbidities of HFpEF. It is known that the main changes of cardiac structure of in HFpEF are cardiac hypertrophy, myocardial fibrosis and left ventricular hypertrophy, and HFpEF is commonly associated with obesity, diabetes, hypertension, renal dysfunction and other diseases, but how these comorbidities cause structural and functional damage to the heart is not completely clear. Recent studies have shown that immune inflammatory response plays a vital role in the progression of HFpEF. This review focuses on the latest research progress in the role of inflammation in the process of HFpEF and the potential application of anti-inflammatory therapy in HFpEF, hoping to provide new research ideas and theoretical basis for the clinical prevention and treatment in HFpEF.


Heart Failure , Hypertension , Ventricular Dysfunction, Left , Humans , Stroke Volume/physiology , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/metabolism , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism , Inflammation/complications , Obesity
5.
Circ Res ; 132(7): 867-881, 2023 03 31.
Article En | MEDLINE | ID: mdl-36884028

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Heart Failure , Myocardial Ischemia , Neuroblastoma , Ventricular Dysfunction, Left , Rats , Mice , Humans , Animals , Brain-Derived Neurotrophic Factor/metabolism , Endothelial Cells/metabolism , Neuroblastoma/metabolism , Heart Failure/etiology , Heart Failure/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Receptors, Adrenergic, beta/metabolism
6.
Free Radic Biol Med ; 194: 23-32, 2023 01.
Article En | MEDLINE | ID: mdl-36436728

Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.


Heart Failure , Myocardial Infarction , Ventricular Dysfunction, Left , Animals , Mice , Diaphragm , Heart Failure/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Myocardial Infarction/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Stroke Volume/physiology , Ventricular Dysfunction, Left/metabolism
7.
Acta Physiologica Sinica ; (6): 390-402, 2023.
Article Zh | WPRIM | ID: wpr-981015

Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure characterized by left ventricular diastolic dysfunction with preserved ejection fraction. With the aging of the population and the increasing prevalence of metabolic diseases, such as hypertension, obesity and diabetes, the prevalence of HFpEF is increasing. Compared with heart failure with reduced ejection fraction (HFrEF), conventional anti-heart failure drugs failed to reduce the mortality in HFpEF due to the complex pathophysiological mechanism and multiple comorbidities of HFpEF. It is known that the main changes of cardiac structure of in HFpEF are cardiac hypertrophy, myocardial fibrosis and left ventricular hypertrophy, and HFpEF is commonly associated with obesity, diabetes, hypertension, renal dysfunction and other diseases, but how these comorbidities cause structural and functional damage to the heart is not completely clear. Recent studies have shown that immune inflammatory response plays a vital role in the progression of HFpEF. This review focuses on the latest research progress in the role of inflammation in the process of HFpEF and the potential application of anti-inflammatory therapy in HFpEF, hoping to provide new research ideas and theoretical basis for the clinical prevention and treatment in HFpEF.


Humans , Heart Failure , Stroke Volume/physiology , Hypertrophy, Left Ventricular/metabolism , Ventricular Dysfunction, Left/metabolism , Inflammation/complications , Obesity , Hypertension
8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36293543

Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)-/- mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH-/- mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH-/- mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH-/- mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH-/- mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH-/- mice. Finally, FAAH-/--mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation.


Cannabinoids , Cardiomyopathies , Coronary Artery Disease , Myocardial Ischemia , Ventricular Dysfunction, Left , Mice , Animals , Endocannabinoids/metabolism , Ligands , Amidohydrolases/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Receptors, Cannabinoid , PPAR alpha/metabolism , Ventricular Dysfunction, Left/metabolism , Inflammation , Reperfusion , Collagen , Hypertrophy
9.
Life Sci ; 306: 120844, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35907495

Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.


Cardiovascular Diseases , Ventricular Dysfunction, Left , AMP-Activated Protein Kinases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Humans , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction/physiology , Ventricular Dysfunction, Left/metabolism
10.
Int J Mol Sci ; 23(11)2022 May 25.
Article En | MEDLINE | ID: mdl-35682624

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Heart Failure , Ventricular Dysfunction, Left , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Echocardiography , Heart Failure/metabolism , Hypertrophy, Left Ventricular/pathology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Remodeling
11.
Circ Res ; 131(3): 222-235, 2022 07 22.
Article En | MEDLINE | ID: mdl-35701874

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Heart Failure , Hydrogen Sulfide , Ventricular Dysfunction, Left , Adenosine Triphosphate/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Heart Failure/metabolism , Humans , Hydrogen Sulfide/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardium/metabolism , Ventricular Dysfunction, Left/metabolism
12.
Nutr Metab Cardiovasc Dis ; 32(6): 1343-1352, 2022 06.
Article En | MEDLINE | ID: mdl-35428541

AIM: Diastolic dysfunction is the decreased flexibility of the left ventricle due to the impaired ability of the myocardium to relax and plays an important role in the pathogenesis of heart failure. Lipid metabolism is a well-known contributor to cardiac conditions, including ventricular function. In this article, we aimed to review the literature addressing the connections between lipids, their storage, and metabolism with left ventricular diastolic dysfunction. DATA SYNTHESIS: We searched Google scholar, Pubmed, Embase and Researchgate for our keywords: "Diastolic function", "Fat" and "Lipid profile". Initially, 250 articles were selected by title and 84 of them were chosen as most relevant and directly reviewed. CONCLUSIONS: Alterations of lipid metabolism in cardiac muscle and cardiac lipid content can occur in many conditions, including consumption of a high-fat diet, obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). These conditions induce alterations in myocardial lipid metabolism, increase myocardial fat content and epicardial fat thickness and increase inflammation and oxidative stress which ultimately lead to cardiac lipotoxicity and diastolic dysfunction. The effects of lipids on diastolic function can differ based on gender. Lipid profile and metabolism are as important in the pathogenesis of diastolic dysfunction as they are in other cardiovascular disorders. A more careful look at cardiac lipid metabolism in molecular, histological and gross levels results in more precise understanding of its role in myocardial function and leads to development of potential treatments for diastolic dysfunction.


Cardiomyopathies , Ventricular Dysfunction, Left , Cardiomyopathies/metabolism , Diastole/physiology , Humans , Lipids , Myocardium/metabolism , Pericardium , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism
13.
J Cell Mol Med ; 26(8): 2462-2476, 2022 04.
Article En | MEDLINE | ID: mdl-35315192

Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R-operated rats were divided into 4 groups: vehicle, apoptosis (Z-vad), ferroptosis (Fer-1) and necroptosis (Nec-1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z-vad (low and medium doses) or Fer-1 (medium and high doses). Fer-1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec-1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.


Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Ventricular Dysfunction, Left , Animals , Apoptosis , Arrhythmias, Cardiac/drug therapy , Inflammation/metabolism , Mitochondria, Heart/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Rats , Rats, Wistar , Ventricular Dysfunction, Left/metabolism
14.
Cytokine ; 151: 155811, 2022 03.
Article En | MEDLINE | ID: mdl-35091314

BACKGROUND: Aging is associated with metabolic and structural changes causing heart failure with preserved ejection fraction (HFpEF). Interleukin-1 (IL-1) is a pro-inflammatory cytokine involved in aging-related inflammation. OBJECTIVE: We sought to determine whether IL-1 mediates aging-related changes in the heart, as seen in HFpEF. METHODS: We studied age-matched young (4-month-old), middle-aged (14-month-old), and old (23-month-old) wild-type (WT) C57BL/6J and IL-1 receptor type I deficient (IL1RI-KO) male mice. Echocardiography was used to evaluate left ventricular (LV) dimensions and systolic/diastolic function, and a pressure transducer was used to measure the LV end-diastolic pressure. Picrosirius red stain was used to assess for myocardial interstitial fibrosis (MIF) at pathology. RESULTS: WT and IL-1RIKO mice showed a normal cardiac phenotype at young age, without any differences between the two groups. With aging, the WT mice developed LV concentric hypertrophy (as measured by a significant increase in LV mass [+42%, P < 0.01] and relative wall thickness [+34%, P < 0.01]), whereas the aging IL-1RI-KO mice did not. With aging, the WT mice also developed diastolic dysfunction (as measured by a significant increase in isovolumetric relaxation time [+148%, P < 0.01] and a significantly higher LV end-diastolic pressure [+174%, P < 0.01]), whereas the aging IL1RI-KO did not. Aged WT mice showed a significant increase in MIF (+124%, P < 0.01) at cardiac pathology, whereas the aging IL-1RI-KO did not. CONCLUSIONS: Genetically-modified mice lacking the IL-1RI receptor, not responsive to IL-1, are protected from aging-related LV hypertrophy, fibrosis, and diastolic dysfunction. These data support a central role of IL-1 in the pathophysiology of aging-related HFpEF.


Cardiomyopathies , Heart Failure , Receptors, Interleukin-1 Type I , Age Factors , Aging , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Interleukin-1 Type I/metabolism , Stroke Volume/physiology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166301, 2022 02 01.
Article En | MEDLINE | ID: mdl-34748903

Systemic inflammation is a key mediator of left ventricular dysfunction (LV) in prediabetes via the activation of myeloid differentiation factor 2 (MD2)/toll-like receptor 4 complex. The MD2 inhibitor L6H21 effectively reduced systemic and cardiac inflammation in obese mice. However, its effects on cardiac function and regulated cell death pathways in the heart in prediabetes are still unknown. The prediabetic rats were divided into 3 subgroups to receive vehicle, L6H21 (10, 20, 40 mg/kg) or metformin (300 mg/kg) for 1, 2 and 4 weeks. Then, metabolic parameters, cardiac sympathovagal balance, LV function, cardiac mitochondrial function, oxidative stress, inflammation, apoptosis, necroptosis, and ferroptosis were determined. All prediabetic rats exhibited cardiac sympathovagal imbalance, LV dysfunction, and cardiac mitochondrial dysfunction. All doses of L6H21 treatment for 2- and 4-weeks attenuated insulin resistance. L6H21 at 40 mg/kg attenuated cardiac autonomic imbalance and LV dysfunction after 1 week of treatment. Both 10 and 20 mg/kg of L6H21 required longer treatment duration to show these benefits. Mechanistically, all doses of L6H21 reduced cardiac mitochondrial dysfunction after 1 week of treatment, resulting in alleviated oxidative stress and inflammation. L6H21 also effectively suppressed cardiac apoptosis and ferroptosis, but it did not affect necroptosis in prediabetic rats. L6H21 provided the cardioprotective efficacy in dose- and time-dependent manners in prediabetic rats via reduction in apoptosis and ferroptosis.


Chalcones/pharmacology , Ferroptosis , Heart Diseases/drug therapy , Inflammation/drug therapy , Lymphocyte Antigen 96/antagonists & inhibitors , Mitochondria, Heart/drug effects , Prediabetic State/physiopathology , Animals , Diet, High-Fat , Heart Diseases/metabolism , Heart Diseases/pathology , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Rats , Rats, Wistar , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
16.
Minerva Cardiol Angiol ; 70(3): 357-369, 2022 06.
Article En | MEDLINE | ID: mdl-33427423

Diabetes mellitus is emerging as a major risk factor for heart failure. Diabetic cardiomyopathy is defined as a myocardial dysfunction that is not caused by underlying hypertension or coronary artery disease. Studies about clinical features, natural history and outcomes of the disease are few and often conflicting, because a universally accepted operative definition of diabetic cardiomyopathy is still lacking. Hyperglycemia and related metabolic and endocrine disorders are the triggering factors of myocardial damage in diabetic cardiomyopathy through multiple mechanisms. Among these mechanisms, inflammation has a relevant role, similar to other chronic myocardial disease, such as hypertensive or ischemic heart disease. A balance between inflammatory damage and healing processes is fundamental for homeostasis of myocardial tissue, whereas diabetes mellitus produces an imbalance, promoting inflammation and delaying healing. Therefore, diabetes-related chronic inflammatory state can produce a progressive qualitative deterioration of myocardial tissue, which reflects on progressive left ventricular functional impairment, which can be either diastolic, with prevalent myocardial hypertrophy, or systolic, with prevalent myocardial fibrosis. The aim of this narrative review is to summarize the existing evidence about the role of inflammation in diabetic cardiomyopathy onset and development. Ultimately, potential pharmacological strategies targeting inflammatory response will be reviewed and discussed.


Diabetes Mellitus , Diabetic Cardiomyopathies , Heart Failure , Hyperglycemia , Hypertension , Ventricular Dysfunction, Left , Diabetes Mellitus/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Heart Failure/etiology , Humans , Hyperglycemia/complications , Hyperglycemia/metabolism , Hypertension/complications , Hypertension/metabolism , Inflammation/complications , Inflammation/metabolism , Myocardium/metabolism , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/metabolism
17.
Hypertension ; 79(3): 575-587, 2022 03.
Article En | MEDLINE | ID: mdl-34961326

BACKGROUND: Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm. METHODS: Sprague-Dawley pups were exposed to room air (controls) or 80% O2 at postnatal days 3 to 10 (oxygen-induced cardiomyopathy). We studied left ventricle mitochondrial changes in 4 weeks old males. In a cohort of young adults born preterm (n=55) and age-matched term (n=54), we compared circulating levels of humanin. RESULTS: Compared with controls, oxygen-exposed rats showed smaller left ventricle mitochondria with disrupted integrity on electron microscopy, decreased oxidative phosphorylation, increased glycolysis markers, and reduced mitochondrial biogenesis and abundance. In oxygen-exposed rats, we observed lipid deposits, increased superoxide production (isolated cardiomyocytes), and reduced Nrf2 gene expression. In the cohort, left ventricle ejection fraction and peak global longitudinal strain were similar between groups however humanin levels were lower in preterm and associated with left ventricle ejection fraction and peak global longitudinal strain. CONCLUSIONS: In conclusion, neonatal hyperoxia impaired left ventricle mitochondrial structure and function in juvenile animals. Serum humanin level was reduced in preterm adults. This study suggests that preterm birth-related conditions entail left ventricle mitochondrial alterations that may underlie cardiac changes perpetuated into adulthood. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03261609.


Cardiomyopathies/etiology , Hyperoxia/complications , Mitochondria/metabolism , Premature Birth , Ventricular Dysfunction, Left/etiology , Adolescent , Adult , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Female , Humans , Hyperoxia/metabolism , Hyperoxia/physiopathology , Intracellular Signaling Peptides and Proteins/blood , Male , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Rats , Rats, Sprague-Dawley , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Young Adult
18.
J Am Coll Cardiol ; 78(24): 2439-2453, 2021 12 14.
Article En | MEDLINE | ID: mdl-34886965

BACKGROUND: Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age. OBJECTIVES: The authors tested the cardioprotective effect of chronic administration of the ARM036, a small molecule that stabilizes the closed conformation of the cardiac sarcoplasmic reticulum ryanodine receptor/calcium release channel (RyR2) in young GRMD-dogs. METHODS: Two-month-old GRMD-dogs were treated with ARM036 or placebo for 4 months. Healthy-dogs of the same genetic background served as controls. Cardiac function was evaluated by conventional and 2-dimensional speckle-tracking echocardiography. Cardiac cellular and molecular analyses were performed at 6 months old. RESULTS: Conventional echocardiography showed normal LV dimensions and ejection fraction in 6-month-old GRMD dogs. Interestingly, 2-dimensional speckle-tracking echocardiography revealed decreased global longitudinal strain and the presence of hypokinetic segments in placebo-treated GRMD dogs. Single-channel measurements revealed higher RyR2 open probability at low resting Ca2+ in GRMD cardiomyocytes than in controls. ARM036 prevented those in vivo and in vitro dysfunctions in GRMD dogs. Myofilament Ca2+-sensitivity was increased in permeabilized GRMD cardiomyocytes at short sarcomere length. ARM036 had no effect on this parameter. Cross-bridge cycling kinetics were altered in GRMD myocytes and recovered with ARM036 treatment, which coincided with the level of myosin binding protein-C-S glutathionylation. CONCLUSIONS: GRMD-dogs exhibit early LV dysfunction associated with altered myofilament contractile properties. These abnormalities were prevented pharmacologically by stabilizing RyR2 with ARM036.


Muscular Dystrophy, Duchenne/complications , Ryanodine Receptor Calcium Release Channel/metabolism , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left/physiology , Animals , Biopsy , Disease Models, Animal , Dogs , Echocardiography , Muscular Dystrophy, Duchenne/diagnosis , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibrils/metabolism , Myofibrils/pathology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
19.
Genes (Basel) ; 12(12)2021 11 28.
Article En | MEDLINE | ID: mdl-34946863

INTRODUCTION: Cardiomyopathies are diseases of the heart muscle and are important causes of heart failure. Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy that can be acquired, syndromic or non-syndromic. The current study was conducted to explore the genetic defects in a Pakistani family with cardiac disease and features of Marfan's syndrome (MFS). METHODS: A family with left ventricle (LV) diastolic dysfunction and MFS phenotype was assessed in Pakistan. The clinical information and blood samples from the patients were collected after physical, cardiovascular, and ophthalmologic examinations. An affected individual (proband) was subjected to whole-exome sequencing (WES). The findings were further validated through Sanger sequencing in the family. RESULTS: Through WES and sanger validation, we identified a novel variant NM_000138.4; c.1402A>G in the Fibrillin-1 (FBN1) gene that segregates with LV diastolic dysfunction and MFS. Furthermore, bioinformatic evaluation suggested that the novel variant is deleterious and disease-causing. CONCLUSIONS: This study identified for the first time a novel FBN1 variant in a family with LV diastolic dysfunction and MFS in Pakistan.


Cardiomyopathies/pathology , Fibrillin-1/genetics , Genetic Predisposition to Disease , Marfan Syndrome/pathology , Mutation , Ventricular Dysfunction, Left/pathology , Adolescent , Cardiomyopathies/complications , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Female , Humans , Male , Marfan Syndrome/complications , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Middle Aged , Pakistan , Pedigree , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Exome Sequencing/methods
...